
The Economics of Software and the Importance of Human Capital 
 
By Richard R. Nelson and Paul M. Romer 
Challenge 
 
Although economists have long appreciated the centrality of technical advance in the process of 
economic growth, a complete understanding of the key processes, investments, and actors that 
combine to produce it has not come easily. Indeed, these processes are very complex and variegated. 
Economists broadly understand that the advance of technology is closely associated with advances in 
knowledge. It also is clear that new knowledge must be embodied in practices, techniques, and 
designs before it can affect an economic activity. Beyond this, different economic analyses focus on 
or stress different things. 
 
Some discussions stress the "public good" aspects of technology, seeing new technology as 
ultimately available to all users. Others treat technology as largely a "private good," possessed by the 
company or person that creates it. Many economists have studied research and development as the 
key source of new technology. Those that have focused on R&D done by private, for-profit business 
firms naturally assumed that the technology created through corporate R&D is, to some extent at 
least, a private good. By contrast, economists who have stressed the "public good" aspects of 
technology have focused on government investments in R&D, "spillovers" from private R&D, or 
both. (These spillovers are another manifestation of the divergence between the public and private 
returns noted above.) Still others argue that a single-minded emphasis on organized R&D as the 
source of technical advance sees the sources too narrowly. They point to evidence that 
learning-by-doing and learning-by-using are important parts of the processes whereby new 
technologies are developed and refined. 
 
Another matter on which economists have been of different minds is whether technical advance and 
economic growth fueled by technical advance can adequately be captured in the mathematical models 
of economic equilibrium that economists developed to describe a static world. Joseph Schumpeter 
and economists proposing "evolutionary" theories of growth have stressed that disequilibrium is an 
essential aspect of the process. By contrast, recent theories that descend from neoclassical models 
presume that the essential aspects of technical advance and economic growth can be captured by 
extending the static equilibrium models. 
 
While we do not want to underplay the important open questions about how economists ought to 
understand technical advance, a workable consensus for policy analysis seems to be emerging from 
these divergent perspectives. Technology needs to be understood as a collection of many different 
kinds of goods. These goods can have the attributes of public goods and private goods in varying 
proportions. Some are financed primarily by public support for R&D, others by private R&D. Both 
business firms and universities are involved in various aspects of the process. Other parts of 
technology are produced primarily through learning-by-doing and learning-by-using, both of which 
can interact powerfully with research and development. There are aspects of the process that are quite 
well treated by equilibrium theories, with their emphasis on foresight, stationariness, and restoring 
forces. Still other aspects are better suited to the evolutionary models, with their emphasis on 
unpredictability and the limits of rational calculation. 
 
One way to summarize this emerging view is to focus on three types of durable inputs in production. 
We will take our imagery and language from the ongoing digital revolution and refer to these three 
different types of inputs as hardware, software, and wetware. Hardware includes all the nonhuman 



objects used in production - both capital goods such as equipment and structures and natural 
resources such as land and raw materials. Wetware, the things that are stored in the "wet" computer 
of the human brain, includes both the human capital that mainstream economists have studied and the 
tacit knowledge that evolutionary theorists, cognitive scientists, and philosophers have emphasized. 
By contrast, software represents knowledge or information that can be stored in a form that exists 
outside of the brain. Whether it is text on paper, data on a computer disk, images on film, drawings 
on a blueprint, music on tape - yen thoughts expressed in human speech - software has the unique 
feature that it can be copied, communicated, and reused. 
 
The role of software, hardware, and wetware can be discerned in a wide variety of economic 
activities. Together they can produce new software, as when a writer uses her skills, word processing 
software, and a personal computer to write a book. They can produce new hardware, for example, 
when an engineer uses special software and hardware to produce the photographic mask that is used 
to lay down the lines in a semiconductor chip. When an aircraft simulator and training software are 
used to teach pilots new skills, they produce new wetware. 
 
These three types of inputs can be discerned in activities that are far removed from digital computing. 
In the construction of the new city of Suzhou in Mainland China, the government of Singapore says 
that its primary responsibility is to supply the software needed to run the city. The hardware is the 
physical infrastructure - roads, sewers, and buildings, etc. - that will be designed according to the 
software. The wetware initially will be the minds of experts from Singapore, but eventually will be 
supplied by Chinese officials who will be trained in Singapore to staff the legal, administrative, and 
regulatory bureaucracies. The software comprises all the routines and operating procedures that have 
been developed in Singapore, examples of which range from the procedures for designing a road, to 
those for ensuring that police officers do not accept bribes, to instructions on how to run an efficient 
taxi service. 
 
Traditional models of growth describe output as a function of physical capital, human capital, and the 
catch-all category, "technology." The alternative proposed here has the advantage of explicitly 
distinguishing wetware (i.e., human capital) from software. This is an essential first step in a careful 
analysis of the intangibles used in economic activity. The next step is to identify the reasons why 
software differs from both hardware and wetware. 
 
Economists identify two key attributes that distinguish different types of economic goods: rivalry and 
excludability. A good is rival if it can be used by only one user at a time. This awkward terminology 
stems from the observation that two people will be rivals for such a good. They cannot both use it at 
the same time. A piece of computer hardware is a rival good. So, arguably, are the skills of an 
experienced computer user. However, the bit string that encodes the operating-system software for 
the computer is a nonrival good. Everyone can use it at the same time because it can be copied 
indefinitely at essentially zero cost. Nonrivalry is what makes software unique. 
 
Although it is physically possible for a nonrival good to be used by many people, this does not mean 
that others are permitted to use it without the consent of the owner. This is where excludability, the 
second property, comes in. A good is said to be excludable if the owner has the power to exclude 
others from using it. Hardware is excludable. To keep others from using a piece of hardware, the 
owner need only maintain physical possession of it. Our legal system supports each of us in our 
efforts to do this. 
 
It is more difficult to make software excludable because possession of a piece of software is not 
sufficient to keep others from using it. Someone may have surreptitiously copied it. The feasible 



alternatives for establishing some degree of control are to rely on intellectual property rights 
established by the legal system or to keep the software, or at least some crucial part of it, secret. 
 
Our legal system assigns intellectual property rights to some kinds of software but not others. For 
example, basic mathematical formulas cannot be patented or copyrighted. At least at the present time, 
there is no way for the scientists who develop algorithms for solving linear programming problems to 
get intellectual property rights on the mathematical insight behind their creation. On the other hand, 
the code for a computer program, the text of a novel, or the tune and lyrics of a song are examples of 
software that is excludable, at least to some degree. 
 
The two-way classification of goods according to excludability and rivalry creates four idealized 
types of goods. Private goods and public goods are the names given to two of these four types. 
Private goods are both excludable and rival. Public goods are both nonexcludable and nonrival. The 
mathematical principles used to solve linear programming problems are public goods. Because they 
are software, they are nonrival; it is physically possible to copy the algorithms out of a book. Because 
the law lets anyone copy and use them, they are nonexcludable. 
 
In addition to private goods and public goods, there are two other types of goods that have no 
generally accepted labels but are important for policy analysis. The first are goods that are rival but 
not excludable. The proverbial example is a common pasture. Only one person's livestock can eat the 
grass in any square foot of pasture, so pastureland is a rival good for purposes of grazing. If the legal 
and institutional arrangements in force give everyone unlimited access to the pasture, it is also a 
nonexcludable good. Frequent allusions to "the tragedy of the commons" illustrate one of the basic 
results of economic theory: Free choice in the presence of rival, nonexcludable goods leads to waste 
and inefficiency. 
 
The fourth category, and one of central importance to the study of technical advance, is of nonrival 
goods that are excludable, at least potentially. We stress the term "potentially" here because society 
often has a choice about the matter. It can establish and enforce strong property rights, in which case 
market incentives induce the production of such goods. Alternatively, it can deny such property 
rights. Then if the goods are to be provided, support through government funding, private 
collaborative effort, or philanthropy is needed. Many of the most important issues of public policy 
regarding technical advances are associated with this latter choice. For rivalrous goods, establishing 
and enforcing strong property rights is generally a good policy (although there are exceptional cases.) 
But for nonrivalrous goods, the matter is much less clear. 
 
By and large, society has chosen to give property rights to the kind of software commonly called 
"technology" and to deny property rights but provide public support for the development of the 
software commonly referred to as "science." Establishing property rights on software enables the 
holder of those rights to restrict access to a nonrival good. When such restriction is applied - for 
example, by charging a license fee - some potential users for whom access would be valuable but not 
worth the fee will choose to forego use, even though the real cost of their using it is zero. So putting a 
"price" on software imposes a social cost - positive-value uses that are locked out - and in general the 
more valuable the software is to large numbers of users, the higher will be the cost. To cite just one 
example that influences the choices of working scientists, there are experiments that could be carried 
out using PCR (polymerase chain reaction) technology that would be done if the scientists involved 
could use this technology at the cost of materials involved. Some of these are not being done because 
the high price charged by the current patent holder makes this research prohibitively expensive. 
 
Note that this is very different from what is entailed in establishing property rights on rival goods. 



Only one user can make use of a rival good at any one time. So property rights, or options to sell 
them, encourage the rival good to be used by those to whom it is most valuable. 
 
Our legal system tries to take account of the ambiguous character of property rights on software. We 
give patents for some discoveries, but they are limited in scope and expire after a specific period of 
time. For rival goods this would be a terrible policy. Imagine the consequences if the titles to all 
pieces of land lapsed after seventeen years. For some nonrival goods, such as works of literature or 
music, we grant copyright protection that lasts much longer than patent protection. This can be 
rationalized by the argument that costs from monopoly control of these goods creates relatively little 
economic inefficiency. For other goods, such as scientific discoveries and mathematical formulas, the 
law gives no protection at all. This presumably reflects a judgment that the cost of monopoly power 
over these goods is too high and that we are better off relying on such nonmarket mechanisms as 
philanthropic giving and government support to finance and motivate the production of these types of 
software. 
 
One important distinction between different types of software is the difference in the amount and 
variety of additional work that needs to be done before that software makes an actual contribution 
that consumers would be willing to pay for. Property rights on software that is directly employed by 
final consumers can lead to high prices - consider the high prices on some pharmaceuticals - and cut 
out use by some parties who would value use, but will not or cannot pay the price. For software such 
as this, however, that is close to final use, it is possible for users to make reasonably well founded 
benefit-price calculations. 
 
It is quite otherwise with software whose major use is to facilitate the development of subsequent 
software. Any market for software, such as mathematical algorithms and scientific discoveries far 
removed from the final consumer, would risk being grossly inefficient. Over time, many producers 
have to intervene, making improvements and refining the basic idea, before such software can be 
finally embodied in a technique, practice, or design that produces value and is sold to a final 
consumer. Economic theory tells us that the presence of monopoly power at many stages in this long 
and unpredictable chain of production can be very bad for efficiency. 
 
In the worst case, property rights that are too strong could preempt the development of entire areas of 
new software. In the computer software industry, people capture this dilemma by asking the 
rhetorical question, "What if someone had been able to patent the blinking cursor?" The point applies 
equally well to many other important discoveries in the history of the industry - the notion of a 
high- level language and a compiler, the iterative loop, the conditional branch point, or a 
spreadsheet-like display of columns and rows. Extremely strong property rights on these kinds of 
software could have significantly slowed innovation in computer software and kept many types of 
existing applications from being developed. 
 
In the production of computer software, basic software concepts are not granted strong property 
rights. Software applications, the kind of software sold in shrink-wrapped boxes in computer stores, 
is protected. This suggests a simple dichotomy between concepts and final applications that mirrors 
the distinction noted in the beginning between the search for basic concepts by a Niels Bohr and the 
search for practical applications by a Thomas Edison. As the work of Pasteur would lead us to expect, 
this dichotomy hides important ambiguities that arise in practice. At the extremes, the distinction 
between concepts and applications is clear, but in the middle ground there is no sharp dividing line. 
Courts are forces to decide either that software for overlapping windows or specific key sequences 
should be treated as essential parts of an application that are entitled to patent or copyright 
protections, or that they are basic concepts that are not given legal protection. In the realm of 



software, there are many shades of gray. The simple dichotomy nevertheless serves as a useful 
framework for guiding the economic and policy analysis of science and technology, for science is 
concerned with basic concepts, and technology is ultimately all about applications. 
 
This article is excerpted from a longer article entitled Science, Economic Growth, and Public 
Policy, which appears in the March-April 1996 issue of Challenge. It is also part of a forthcoming 
book by the authors. 
 
 
 

 


