Stephen Jay Gould— What Does it Mean to Be a Radical?

by Richard C. Lewontin and Richard Levins http://www.monthlyreview.org/

Early this year, Stephen Gould developed lung cancer, which spread so quickly that there was no hope of survival. He died on May 20, 2002, at the age of sixty. Twenty years ago, he had escaped death from mesothelioma, induced, we all supposed, by some exposure to asbestos. Although his cure was complete, he never lost the consciousness of his mortality and gave the impression, at least to his friends, of an almost cheerful acceptance of the inevitable. Having survived one cancer that was probably the consequence of an environmental poison, he succumbed to another.

The public intellectual and political life of Steve Gould was extraordinary, if not unique. First, he was an evolutionary biologist and historian of science whose intellectual work had a major impact on our views of the process of evolution. Second, he was, by far, the most widely known and influential expositor of science who has ever written for a lay public. Third, he was a consistent political activist in support of socialism and in opposition to all forms of colonialism and oppression. The figure he most closely resembled in these respects was the British biologist of the 1930's, J. B. S. Haldane, a founder of the modern genetical theory of evolution, a wonderful essayist on science for the general public, and an idiosyncratic Marxist and columnist for the Daily Worker who finally split with the Communist Party over its demand that scientific claims follow Party doctrine.

What characterizes Steve Gould's work is its consistent radicalism. The word radical has come to be synonymous with extreme in everyday usage: Monthly Review is a radical journal to the readers of the Progressive; Steve Gould underwent radical surgery when tumors were removed from his brain; and a radical is someone who is out in left (or right) field. But a brief excursion into the Oxford English Dictionary reminds us that the root of the word radical is, in fact, radix, the Latin word for root. To be radical is to consider things from their very root, to go back to square one, to try to reconstitute one's actions and ideas by building them from first principles. The impulse to be radical is the impulse to ask, "How do I know that?" and, "Why am I following this course rather than another?" Steve Gould had that radical impulse and he followed it where it counted.

First, Steve was a radical in his science. His best-known contribution to evolutionary biology was the theory of punctuated equilibrium that he developed with his colleague Niles Eldridge. The standard theory of the change in the shape of organisms over evolutionary time is that it occurs constantly, slowly, and gradually with more or less equal changes happening in equal time intervals. This seems to be the view that Darwin had, although almost anything can be read from Darwin's nineteenth century prose. Modern genetics has shown that any heritable change in development that is at all likely to survive will cause only a slight change in the organism, that such mutations occur at a fairly constant rate over long time periods and that the force of natural selection for such small changes is also of small magnitude. These facts all point to a more or less constant and slow change in species over long periods.

When one looks at the fossil record, however, observed changes are much more irregular. There are more or less abrupt changes in shape between fossils that succeed each other in geological time with not much evidence for the supposed gradual intermediates between them. The usual explanation is that fossils are relatively rare and we are only seeing occasional snapshots of the actual progression of organisms. This is a perfectly coherent theory, but Eldridge and Gould went back to square one, and questioned whether the rate of change under natural selection was really as constant as everybody

assumed. By examining a few fossil series in which there was a much more complete temporal record than is usual, they found evidence of long periods of virtually no change punctuated by short periods during which most of the change in shape appeared to occur. They generalized this finding into a theory that evolution occurs in fits and starts and provided several possible explanations, including that much of evolution occurred after sudden major changes in environment. Steve Gould went even further in his emphasis on the importance of major irregular events in the history of life. He placed great importance on sudden mass extinction of species after collisions of large comets with the Earth and the subsequent repopulation of the living world from a restricted pool of surviving species. The temptation to see some simple connection between Steve's theory of episodic evolution and his adherence to Marx's theory of historical stages should be resisted. The connection is much deeper. It lies in his radicalism.

Another aspect of Gould's radicalism in science was in the form of his general approach to evolutionary explanation. Most biologists concerned with the history of life and its present geographical and ecological distribution assume that natural selection is the cause of all features of living and extinct organisms and that the task of the biologist, insofar as it is to provide explanations, is to come up with a reasonable story of why any particular feature of a species was favored by natural selection. If, when the human species lost most of its body hair in evolving from its ape-like ancestor, it still held on to eyebrows, then eyebrows must be good things. A great emphasis of Steve's scientific writing was to reject this simplistic Panglossian adaptationism, and to go back to the variety of fundamental biological processes in the search for the causes of evolutionary change. He argued that evolution was a result of random as well as selective forces and that characteristics may be the physical byproducts of selection for other traits. He also argued strongly for the historical contingency of evolutionary change. Something may be selected for some reason at one time and then for an entirely different reason at another time, so that the end product is the result of the whole history of an evolutionary line, and cannot be accounted for by its present adaptive significance.

Thus, for instance, humans are the way we are because land vertebrates reduced many fin patterns to four limbs, mammals' hearts happen to lean to the left while birds' hearts lean to the right, the bones of the inner ear were part of the jaw of our reptilian ancestors, and it just happened to get dry in east Africa at a crucial time in our evolutionary history. Therefore, if intelligent life should ever visit us from elsewhere in the universe, we should not expect them to have a human shape, suffer from sexist hierarchy, or have a command deck on their space ship.

Gould also emphasized the importance of developmental relations between different parts of an organism. A famous case was his study of the Irish elk, a very large extinct deer with enormous antlers, much greater in proportion to the animal's size than is seen in modern deer. The invented adaptationist story was that male deer antlers are under constant natural selection to increase in size because males use them in combat when they compete for access to females. The Irish elk pushed the evolution of this form of machismo too far and their antlers became so unwieldy that they could not carry on the normal business of life and so became extinct. What Steve showed was that for deer in general, species with larger body size have antlers that are more than proportionately larger, a consequence of a differential growth rate of body size and antler size during development. In fact, Irish elk had antlers of exactly the size one would predict from their body size and no special story of natural selection is required.

None of Gould's arguments about the complexity of evolution overthrows Darwin. There are no new paradigms, but perfectly respectable "normal science" that adds richness to Darwin's original scheme. They typify his radical rule for explanation: always go back to basic biological processes and see where that takes you.

Steve Gould's greatest fame was not as a biologist but as an explicator of science for a lay public, in lectures, essays, and books. The relation between scientific knowledge and social action is a problematic one. Scientific knowledge is an esoteric knowledge, possessed and understood by a small elite, yet the use and control of that knowledge by private and public powers is of great social consequence to all. How is there to be even a semblance of a democratic state when vital knowledge is in the hands of a self-interested few? The glib answer offered is that there are instruments of the popularization of science, chiefly science journalism and the popular writings of scientists, which create an informed public. But that popularization is itself usually an instrument of obfuscation and the pressing of elite agendas.

Science journalists suffer from a double disability: First, no matter how well educated, intelligent, and well motivated, they must, in the end, trust what scientists tell them. Even a biologist must trust what a physicist says about quantum mechanics. A large fraction of science reporting begins with a press conference or release produced by a scientific institution. "Scientists at the Blackleg Institute announced today the discovery of the gene for susceptibility to repetitive motion injury." Second, the media for which science reporters work put immense pressure on them to write dramatic accounts. Where is the editor who will allot precious column inches to an article about science whose message is that it is all very complicated, that no predictions can be made, that there are serious experimental difficulties in the way of finding the truth of the matter, and that we may never know the answer? Third, the esoteric nature of scientific knowledge places almost insuperable rhetorical barriers between even the most knowledgeable journalist and the reader. It is not generally realized that a transparent explanation in terms accessible to the lay reader requires the deepest possible knowledge of the matter on the part of the writer.

Scientists, and their biographers, who write books for a lay public are usually concerned to press uncritically the romance of the intellectual life, the wonders of their science, and to propagandize for yet greater support of their work. Where is the heart so hardened that it cannot be captivated by Stephen Hawking and his intellectual enterprise? Even when the intention is simply to inform a lay public about a body of scientific knowledge, the complications of the actual state of understanding are so great that the pressure to tell a simple and appealing story is irresistible.

Steve Gould was an exception. His three hundred essays on scientific questions, published in his monthly column in Natural History Magazine, many of which were widely distributed in book form, combined a truthful and subtle explication of scientific findings and problems, with a technique of exposition that neither condescended to his readers nor oversimplified the science. He told the complex truth in a way that his lay readers could understand, while enlivening his prose with references to baseball, choral music, and church architecture. Of course, when we consider writing for a popular audience, we have to be clear about what we mean by popular. The Uruguayan writer Eduardo Galeano asked what we mean by writing for "the people" when most of our people are illiterate. In the North there is less formal illiteracy, but Gould wrote for a highly educated, even if nonspecialist, audience for whom choral music and church architecture provided more meaningful metaphors than the scientific ideas themselves.

Most of the subjects Steve dealt with were meant to be illustrative precisely of the complexity and diversity of the processes and products of evolution. Despite the immense diversity of matters on which he wrote there was, underneath, a unifying theme: that the complexity of the living world cannot be treated as a manifestation of some grand general principle, but that each case must be understood by examining it from the ground up and as the realization of one out of many material paths of causation.

In his political life Steve was part of the general movement of the left. He was active in the anti-Vietnam War movement, in the work of Science for the People, and of the New York Marxist School. He identified himself as a Marxist but, like Darwinism, it is never quite certain what that identification implies. Despite our close comradeship in many things over many years, we never had a discussion of Marx's theory of history or of political economy. More to the point, however, by insisting on his adherence to a Marxist viewpoint, he took the opportunity offered to him by his immense fame and legitimacy as a public intellectual to make a broad public think again about the validity of a Marxist analysis.

At the level of actual political struggles, his most important activities were in the fight against creationism and in the campaign to destroy the legitimacy of biological determinism including sociobiology and racism. He argued before the Arkansas State Legislature that differences among evolutionists or unsolved evolutionary problems do not undermine the demonstration of evolution as an organizing principle for understanding life. He was one of the authors of the original manifesto challenging the claim of sociobiology that there is an evolutionarily derived and hard-wired human nature that guarantees the perpetuation of war, racism, the inequality of the sexes, and entrepreneurial capitalism. He continued throughout his career to attack this ideology and show the shallowness of its supposed roots in genetics and evolution. His most significant contribution to the delegitimation of biological determinism, however, was his widely read exposure of the racism and dishonesty of prominent scientists, The Mismeasure of Man. Here again, Gould showed the value of going back to square one.

Not content simply to show the evident class prejudice and racism expressed by American, English, and European biologists, anthropologists, and psychologists prior to the Second World War, he actually examined the primary data on which they based their claims of the larger brains and superior minds of northern Europeans. In every case the samples had been deliberately biased, or the data misrepresented, or even invented, or the conclusions misstated. The consistently fraudulent data on IQ produced by Cyril Burt had already been exposed by Leo Kamin, but this might have been dismissed as unique pathology in an otherwise healthy body of inquiry. The evidence produced by Steve Gould of pervasive data cooking by an array of prominent investigators made it clear that Burt was not aberrant, but typical. It is widely agreed that ideological commitments may have an unconscious effect on the directions and conclusions of scientists. But generalized deliberate fraud in the interests of a social agenda? What more radical attack on the institutions of "objective" science could one imagine?

Being a radical in the sense that informs this memorial is not easy because it involves a constant questioning of the bases of claims and actions, not only of others, but also of our own. No one, not even Steve Gould, could claim to succeed in being consistently radical, but, as Rabbi Tarfon wrote, "It is not incumbent on us to succeed, but neither are we free to refrain from the struggle."

RICHARD C. LEWONTIN and RICHARD LEVINS have been colleagues and comrades for over forty years. They are the authors of The Dialectical Biologist (Harvard University Press, 1987), and Biology as Ideology: The Doctrine of DNA (HarperCollins, 1992). Lewontin is Research Professor in Biology at Harvard and taught a joint course in evolution with Steve Gould. Levins is the head of the Human Ecology program at the Harvard School of Public Health.

All material copyright ©2002 by Monthly Review